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Weather is BIG.  A big (cold) high covers the east, a big low comes into the west. 



Spectrum of atmospheric kinetic energy density. 
Weather energy is concentrated at large scales. 

US 48 states           Balancing Area          



                Low Cost and Low Carbon Wind and Solar Energy Systems: 
                              Feasible with Large Geographic Size 
 
•  We conducted a five year study to determine the geographic 

domain size effects of wind and solar energy generation 
systems. 

•  We built a national energy “system designer” that cost 
minimizes using hourly wind, solar and load concurrently. 

•  We conducted two studies:  A detailed US Study, and a Global 
Study. 

5	
  



The	
  Minimiza.on	
  Procedure	
  

6	
  

= + + + +

+ + ≥

ALL OTHER EQUATIONS CONSTRAIN THE MAGNITUDE OF ANY OF THE TERMS 

Minimize: 

Subject to: 



 
Step 1.  We collected an extraordinarily detailed and accurate weather 
data set. 
 
Step 2. We collected electric load data concurrent in time with the 
weather data.  
 
Step 3.  We developed a power system simulator that used all power 
sources and associated infrastructure ( transmission and storage). 
 
Step 4.  The weather and economic simulator was used to study the 
technical, economic and geographic characteristics of a national 
system.  
 
 

US Study:  National Energy System Designer 
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Rapid  Update Cycle (RUC) Hourly Assimilation 
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(UTC) 
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Obs 

Cycle hydrometeor, soil temp/moisture/
snow plus atmosphere state variables 

Hourly obs  
Data Type          ~Number 
Rawinsonde (12h)       150 
NOAA profilers                     35         
VAD winds              120-140       
PBL – prof/RASS                ~25 
Aircraft  (V,temp)        3500-10000 

TAMDAR (V,T,RH) *       200-3000 
Surface/METAR           2000-2500  
Buoy/ship               200-400   
GOES cloud winds       4000-8000   
GOES cloud-top pres   10 km res    
GPS precip water              ~300 
Mesonet (temp, dpt)      ~8000 
Mesonet (wind)               ~4000 
METAR-cloud-vis-wx      ~1800 
AMSU-A/B/GOES radiances             
– RR only 
Radar reflectivity/ lightning       

       1km 
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Multivariate Multiple Regression
• We can now formulate the multivariate multiple regression

model:

Yn⇥p = Zn⇥(r+1)�(r+1)⇥p + ✏n⇥p,

E(✏(i)) = 0, Cov(✏(i), ✏(k)) = �ikI, i, k = 1,2, ..., p.

• The m measurements on the jth sample unit have covariance
matrix ⌃ but the n sample units are assumed to respond
independently.

• Unknown parameters in the model are �(r+1)⇥p and the
elements of ⌃.

• The design matrix Z has jth row
h

zj0 zj1 · · · zjr

i
, where

typically zj0 = 1.
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•  We have p(=3) irradiance fields to calculate and n(=81,434) 
observation of each field. The observations are taken from 10 sites 
(6 SURFRAD and 4 ISIS) 

•  The regressors (β) are the satellite data (3 infrared channels, a 
visible channel, and a water vapor channel), the RUC Assimilation 
Model values for water within the column (snow, ice, etc…), the 
temperature from the model, the calculated top of atmosphere 
irradiance, and the zenith angle. 

•  The measurements are taken from 2006 – 2008, and averaged 
over the top of the hour (for 12 minutes) and matched up with the 
model data. 

•  The data is quality controlled, and all night-time measurements 
were removed. 

Multivariate Multiple Regression

• We estimate the regression coe�cients associated with the
ith response using only the measurements taken from the n

sample units for the ith variable. Using Least Squares and
with Z of full column rank:

�̂(i) = (Z0Z)�1Z0Y(i).

• Collecting all univariate estimates into a matrix:

�̂ =
h

�̂(1) �̂(2) · · · �̂(p)

i
= (Z0Z)�1Z0

h
Y(1) Y(2) · · · Y(p)

i
,

or equivalently �̂(r+1)⇥p = (Z0Z)�1Z0Y .

537



Resource	
  Video	
  –	
  GHI	
  USA	
  



Linear	
  Mul=ple	
  Mul=variate	
  Regression	
  

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" 31"

Ja
nu

ar
y'
GH

I'(
W
/m

2 )
'

Day'

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

1000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" 31"

Ju
ne

%G
HI
%(W

/m
2 )
%

Day%

Figure 5: Time series of measured (dashed red) and estimated (solid blue) GHI for Burns, OR. The top panel is for the 31 days from January 1
2006 and the bottom panel is for the 31 days following June 1 2006. The panels show high correlation between the estimated and the measured.

on the same spatial grid so that they can be applied to
electric power modeling seamlessly. We verified our
technique against the SUNY dataset provided by NREL
(http://maps.nrel.gov/prospector) for time pe-
riods that overlapped the one investigated here at a
sample of the seven independent sites and found that
the present regression technique is superior in terms of
MBE and RMSE. For example, at the Burns, OR site
the current technique has an MBE of -1.64% for GHI,
while the SUNY dataset over the same period has an
MBE of -2.00%. Similar statistical di↵erences were
found with the other irradiance species and di↵erent
sites. The di↵erences are not very large, and a review of
the SUNY dataset statistics can be found in, e.g. Not-
trott and Kleissl (2010); Djebbar et al. (2012). More
comparisons need to be done at more sites to establish
if indeed the current technique is consistently more ac-

curate.

The linear multivariate multiple regression method
has provided accurate estimations of the solar irradi-
ance over the contiguous USA. The dataset is comprised
of 40,000 geographic cells which each contain 26,000
hourly data points. In Figs 9–11, we show the three-
year average of GHI, DNI, and DIF over the contiguous
USA in kWh/m2/day. To convert from kWh/m2/day to
average W/m2 multiply it by 41.695, so the range from
Fig. 9 is 125–271 W/m2. Figure 9 shows that the South-
West is the best resource site in terms of GHI, which is
very important for solar PV. All three maps show that
the very North West and North East are very poor in
terms of irradiance. The maps are consistent with other
datasets, but cover a wider time period and geographic
area with no blending of di↵erent datasets. Figure 10 is
interesting because DNI is very important for Concen-

11



Solar	
  PV	
  Capacity	
  Factor	
  Map	
  

15 20 25 30



 
Step 1.  We collected an extraordinarily detailed and accurate weather 
data set. 
 
Step 2. We collected electric load data concurrent in time with the 
weather data.  
 
Step 3.  We developed a power system simulator that used all power 
sources and associated infrastructure ( transmission and storage). 
 
Step 4.  The weather and economic simulator was used to study the 
technical, economic and geographic characteristics of a national 
system. (Four studies will be presented.) 
 
 

US Study:  National Energy System Designer 
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Step 1.  We collected an extraordinarily detailed and accurate weather 
data set. 
 
Step 2. We collected electric load data concurrent in time with the 
weather data.  
 
Step 3.  We developed a power system simulator that used all 
power sources and associated infrastructure ( transmission and 
storage). 
 
Step 4.  The weather and economic simulator was used to study the 
technical, economic and geographic characteristics of a national 
system. (Four studies will be presented.) 
 
 

US Study:  National Energy System Designer 
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•  The type and amount of electricity generation installed in each RUC cell is constrained by: 
	
  

–  Spacing	
  between	
  facili=es	
  
–  Topography	
  of	
  the	
  land	
  	
  
–  Land	
  Use	
  (residen=al,	
  commercial,	
  protected	
  lands,	
  etc…)	
  

Land	
  Use	
  Constraints	
  



Cost	
  Data/Values	
  

In order to account for curtailment, capacity factors, sunk costs, and other factors, the math-
ematical optimization utilizes an annual cost-per-unit generation capacity for each generating
unit. Since there is no fuel cost for the wind and solar projects, the total cost per project can be
separated into capital and Operations and Maintenance (O&M) costs. The natural gas plants,
however, have capital, O&M, and fuel costs to consider. For the present studies, the O&M costs
and amortized capital costs are combined into a single cost per year.

A review of the literature for capital costs was carried out [1, 2, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61]. The capital and O&M costs selected for the present study are displayed in Fig.
11 and Table 3. The plot shows the projected 2030 capital and O&M costs in 2013$ per watt
installed. The best available current price is taken to be the high price for each technology,
while the low cost estimate is based upon the optimistic prices in the studies reviewed. The mid
range values are the mean of the high and low prices.

Figure 11: The projected 2030 overnight capital costs including fixed O&M in 2013$ used in
the present study.

The natural gas power plants are assumed to be a more mature technology. Therefore, we
only use a single cost for the natural gas power plants in all three of the price scenarios, namely
$1.24 / W (see Fig. 11 and Table 3). However, since natural gas prices have fluctuated wildly
in the past we take three cases from the Annual Energy Outlook [1] as our low, mid, and high
natural gas fuel prices. The three prices are shown in Table 3 and in Fig. 12 in 2013$ / MMBtu.
Other key factors affecting the cost of natural gas generation are the heat rate (measure of
efficiency of the plant), and cost of variable O&M. In order to limit the degrees of freedom in
the present studies, these values were kept constant across the scenarios run. The values used
were 6.430 MMBtu / MWh for the heat rate and $3.31 / MWh for the variable O&M (2013$)
[60, 61].

The final key cost used in the US study is the cost of high-voltage transmission. The han-
dling of transmission in the US study only addresses the cost of erecting new HVDC lines,

23

Table 3: Cost of capital and O&M of technologies (2013$ / W), natural gas fuel (2013$ /
MMBtu), HVDC transmission line (2013$ / MW-mile), and HVDC stations (2013$ / MW).

Onshore Offshore PV CCGT NG Fuel HVDC lines HVDC Stations

Low W&S High NG $2.16 $3.41 $1.19 $1.24 $11.10 $701.36 182,856.11
Mid W&S Mid NG $2.25 $5.53 $2.57 $1.24 $8.82 $701.36 182,856.11
High W&S Low NG $2.36 $7.64 $3.94 $1.24 $5.40 $701.36 182,856.11

5 Transmission, Nodes, and Divisions
Transmission is modeled in the present studies (to varying degrees) and is important aspect
of electric power systems. We explain how the concepts of nodal areas, nodes and divisions
are used in the optimization. Additionally, we discuss the assumptions made with regards to
transmission in the global and US studies.

For both the global and US study a division is a subset of the full domain that is completely
independent of other divisions and is solved as a separate electric power system. No information
or power transfer is allowed between divisions. A nodal area is a subset of division, but is
connected to other nodal areas within the division byhigh-voltage transmission lines. Therefore,
nodal areas are the building blocks of divisions. In the limit of the largest number of divisions
per domain there is one nodal area per division. Within each nodal area there is a dominant city
that acts as the electric power sink and a node for the high-voltage transmission network.

Transmission in the global study was assumed to be perfect and without electric losses. To
investigate how the penetration of wind and solar changes with area, each of the four regions
(Australia, China, Europe, and the USA) in the global study were iteratively divided from the
full domains to divisions of 2, 4, 8, 16, 32, 64, 128, and 256. The full domain has 256 nodal ar-
eas that are perfectly connected by lossless transmission to form a single electric power system.
Every division has an equal number of nodal areas that are perfectly connected. The divisions
were made by repeatedly splitting the regions in half (as close as possible) vertically then hori-
zontally. Electric load within each division was weighted by the fraction of the total population
residing in that division. The spatial availability of the wind and solar installations for each FIM
grid cell remains the same for each optimization.

The US study followed the same method as the global study to divide the domain into divi-
sions, however the nodal areas within the divisions are connected by transmission that includes
electric losses. Due to computational constraints in performing an optimization of this size,
we could only resolve a full formulation of high-voltage transmission between nodal areas of
size equal to the 32 divisions (which we call the high-voltage transmission nodal areas). The
multiply connected HVDC transmission network that is available for the optimization to choose
from is shown in Fig. 14. The blue lines show where the power must flow from and to. The
transmission between the 8 nodal areas enclosed by the high-voltage transmission nodal area is
assumed to be alternating current (AC) with electric losses of 1% per 100 miles and is prepro-
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drawback to the load-matching approach. There are no cost constraints, which in reality drives
all business decisions. The load-matching procedure may provide the smallest divergence from
the electric load needed, but the costs may be very high, and therefore the solution is purely
academic.

The mathematical optimization chosen for the current paper is a cost minimization which
has linear constraints with regards to the electric load requirements, the transmission and losses
encountered, the facilities required to be built and the land use allowed for wind and solar tech-
nologies. The cost optimization is linear and finds an optimal system with regards to minimum
yearly cost only. There is no attempt to model sociopolitical, grid integration or other costs
(such as public objections, legal issues, distribution of power from the local substation, and so
on).

The global and US use the same mathematical optimization, however, because the global
study has less data available, as described in sections 1–5, some of the terms, constraints, or
variables are turned off inside the algorithm. The parts that are turned off for the global study
will be highlighted throughout the description of the mathematics.

The mathematical optimization chosen is cost optimization, so the costs set out is section 4
are the primary exogenous (input or external) variables for the objective function. The objective
function is the equation that the algorithm is trying to make as small as possible. We need to
incorporate the annual amortized capital and fixed O&M costs for each technology, the natural
gas fuel costs, and the capital and O&M costs for transmission lines and for the transformer
stations. Thus, mathematically, the objective function appears as

Minimize  =
X

�

X



Cv
� · V� +

X

µ

 
Cg
µ ·Gµ + Cf

µ ·
X

⌧

Dµ⌧

!

+
X

↵̂

X

�̂

T↵̂�̂ ·
⇣
Cts + Ctl

↵̂�̂
· �↵̂�̂

⌘
. (14)

Here Cv
� represents the annual amortized capital cost (2013$/W) of the variable generator of

type  at location �, Cg
µ is the capital cost of the dispatchable generators at location µ (2013$/W),

Ctl
↵̂�̂

is the cost of each HVDC transmission line (2013$/MW-mile), Cts
↵̂�̂

is the cost of each
HVDC transformer station pair (2013$/MW), and Cf

µ is the cost of natural gas (2013$/MMBtu).
Table 3 provides all the costs used in the optimization and inside the algorithm they are con-
verted into annual amortized costs and these are the exogenous variables Cj

i written out above.
The other exogenous variable is the length of the HVDC transmission lines (�↵̂�̂), which is pre-
processed by calculating the great circle distances from the single largest cities in each of the 32
transmission nodes. Figure 14 shows the lines that are calculated. The variables V�, Gµ, Dµ⌧

and T↵̂�̂ are endogenous (output or internal) variables and are computed by the optimization.
V� is the installed capacity of the variable generators, Gµ is the installed capacity of natural
gas, Dµ⌧ is the natural gas fuel burned, and T↵̂�̂ is the capacity of the transmission lines. The
global study does not include transmission costs, and so the last term in Eq. (14) is turned off.
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The objective function [Eq. (14)] for the US study has of the order of 400,000 endogenous
variables, while the global study has of the order of 20,000. The difference in magnitude of the
objective function variables illustrates the added sophistication of the US study compared with
the global study. The minimization of Eq. (14) results in a single 2013$ value (and the value of
all the endogenous variables). The trivial solution of the minimization is $0, which corresponds
to no generators installed, no natural gas burned, and no transmission built. The constraints set
out in the remainder of the present section will act to force the value of  to be greater than zero.
The competing effects of the constraints and the minimization of the objective function is what
makes the site selection important, and that will become clearer as we introduce the constraints.

The first constraint is the most fundamental: that the electric demand is met on every time
step at every location. The electric demand in the optimization is input from section 3 and
it is matched by combining the electric generation from wind, solar, natural gas, nuclear, and
hydroelectric within each transmission node along with the HVDC transmission power flux and
the curtailment of the wind and solar due to excess generation. The load constraint can be
written as

X

�

 
bv�! ·

X



V� · W�⌧

!
+
X

µ

bcµ! · (Dµ⌧ +Nµ⌧ +Hµ⌧ )

= L!⌧ � F!⌧ + E!⌧ , 8 !, ⌧ . (15)

It is here, in Eq. (15), that the weather data from section 1 is utilized. It appears in the first term
of the left-hand side of the equation as W�⌧ . The weather data is in the form of instantaneous
capacity factors, which are multiplied by the installed capacity at that location (V�). The total
wind and solar generation is filtered into transmission nodes by bv�!. The subscript ! denotes
the transmission nodes. The second term is the total electric generation from the conventional
generators (natural gas, nuclear, and hydroelectric). Again, the generation is filtered into the
transmission nodes by bcµ!. The right-hand side of Eq. (15) consists of the electric demand of
each transmission node, which was discussed in section 3 (L!⌧ ), minus the HVDC transmission
power flux (F!⌧ ), plus the excess of generation or curtailment (E!⌧ ). The excess generation
term is a slack variable to take into account the possibility that generation can be more than
the required electric load and transmission combined. The transmission flux term is explained
more by the next two constraints. The load constraint is performed for every time step within
every transmission node.

It can be seen from Eq. (15) how important the weather data is. If the weather data is
not accurate due to coarse spatial or temporal resolution, or inaccurate power modeling, or
even non-temporally aligned data with the electric load, then the values for every other variable
changes. The altered variables ultimately feed into the objective function, producing incorrect
costs. Inaccurate costs lead to different decisions by the optimization of where to site the gen-
erators. An example would be to perform the optimization at a temporal resolution of 6 hours,
which will mean more solar PV would be selected. The lower temporal fidelity alters the time
series properties of the weather data. In the case we just illustrated, the time series becomes
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more favorable for solar PV because of fewer time steps where solar generation is zero or very
low. It is assumed that hourly temporal resolution at the spatial resolution of both the global
and US study is sufficient to capture enough of the time series properties of the solar and wind
power generation such that the results will not alter significantly at higher temporal fidelity.

The following two constraints describe the HVDC transmission power flux term from Eq.
(15) and the transmission capacity term in Eq. (14). The HVDC transmission depiction inside
the optimization is significant. The HVDC transmission allows power to be shared between the
transmission nodes, but at a price (at least for the US Study). The HVDC transmission power
flux can be positive, negative, or zero because power can flow in to or out of a transmission
node. The flow term balances power, and therefore satisfies Kirchoff’s law assuming constant
voltage. The HVDC transmission power flux is the summation of all the electric power entering
and leaving the transmission node via the HVDC transmission lines. If the flux term is positive
the transmission node is know as a source node, if it is negative it is know as a sink node, and if
it is zero then it is known as a transshipment node. The HVDC transmission power flow along
the HVDC transmission lines is represented in a nonnegative matrix (T↵�⌧ ). Hence, the HVDC
transmission flux is derived as

F!⌧ =
X

↵

T↵�⌧ · (1� �↵� · �↵�)
�����
�=!

�
X

�

T↵�⌧

�����
↵=!

, 8 !, ⌧ (↵ 6= �), (16)

where �↵� is the electric losses per mile along the transmission line and �↵� is the length of
the transmission line. The electric losses are only applied at the receiving transmission node.
Equation (16) is the HVDC transmission flux constraint and the first term on the right-hand
side is the summation of the power matrix multiplied by one minus the electric losses along
each line (another matrix) while the second term just totals the transmission power leaving the
same node. The summing variables ↵ and � are the heads and tails of the transmission arc. The
HVDC transmission flux constraint is performed for each of the transmission nodes at each time
step of the optimization. At each time step the upper triangle of the matrix must equal the lower
triangle. For the global study the electric losses (�↵�) are set to zero, while for the US study
they are set in section 5.

The second transmission constraint determines the capacity of the HVDC transmission lines
and is called the HVDC transmission capacity constraint. The way the optimization handles the
capacity of the HVDC transmission is simple, but sets it apart from other optimization routines
available for electric power systems. The HVDC transmission capacity constraint determines
the capacity of the lines in both directions simultaneously. Other optimizations [2, 3] find the
capacity of each arc and find the related costs and consequently power flow is restricted to the
direction that the transmission arc has been built, whereas the optimization described in the
present paper computes the capacity of the corridor for both arcs. By performing the HVDC
transmission capacity constraint in this manner, the optimization can dispatch power in either
direction along that corridor once it has been built, rather than being restricted to the direction
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that was built in the arc form. The constraint looks very simple mathematically as

T↵̂�̂ � T↵̂�̂ � T↵�⌧ |↵,�=↵̂,�̂ � 0, 8 ↵̂, �̂, ⌧ (↵̂ > �̂). (17)

Here T↵̂�̂ is the capacity of the HVDC transmission line, which is sent up to the objective
function in Eq. (14). T↵�⌧ is the HVDC transmission power flow matrix found by Eq. (16).
Equation (17) states that the capacity of the transmission line must be greater than the power
flow within it at any time. It automatically updates the opposite direction of flow capacity for
use at future time steps. The HVDC transmission capacity constraint is performed for each
transmission node at each time step of the optimization. The difficulty with Eq. (17) is that
to compute both directions simultaneously the transmission power matrix must be transposed
(a computationally expensive procedure) along with the additional degrees of freedom created
by opening a new route for transmission to flow when a corridor is expanded. The constraint
has an upper bound denoted by T↵̂�̂ , which in the present paper is set uniformly as 12 GW.
Since the global study does not factor in the cost of transmission, Eq. (17) is not included in the
optimization procedure.

The optimization already denudes the power produced by wind and solar (W�⌧ ) by 5% as
described in section 1. The reduction in power is designed to approximate turbine and panel
downtimes as well as interactions between wind farms. For the natural gas portion of the gen-
eration, we instead impose the planning reserve requirement constraint. The planning reserve
requirement controls how much larger the installed capacity must be than the peak power gen-
eration on any time step over the time horizon in the optimization. It can be written as
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bcµ! ·Gµ �
�
1 +Rg

µ

�
·
X

µ

bcµ! ·Dµ⌧ � 0, 8 !, ⌧ , (18)

where Gµ is the installed capacity, Dµ⌧ is the power provided by natural gas at each time step,
bcµ! is the filter for each transmission node, and Rg

µ is the planning reserve margin. Equation
(18) states that the installed capacity of natural gas within each transmission node must be
greater the the generation by natural gas at each time step in that same transmission node. The
planning reserve requirement constraint is run in every transmission node on every time step.
We could rewrite Eq. (18) such that it states
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µ

bcµ! ·Gµ �
�
1 +Rg

µ

�
·
X

µ

bcµ! ·max (Dµ⌧ ) � 0, 8 !, (19)

which would reduce the number of constraints dramatically. However, Eq. (19) is nonlinear
and requires a much more computationally intensive algorithm to solve. Therefore, we adopt
Eq. (18) as the constraint within the present optimization. For both the global and US study the
planning reserve margin is set at 15%.

The existing (2012) nuclear and hydroelectric plants are assumed to continue to run through
the course of the optimization period. To get an estimate of the power output of those plants
we collected data and estimated a monthly value for both nuclear and hydroelectric generation.
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The optimization already denudes the power produced by wind and solar (W�⌧ ) by 5% as
described in section 1. The reduction in power is designed to approximate turbine and panel
downtimes as well as interactions between wind farms. For the natural gas portion of the gen-
eration, we instead impose the planning reserve requirement constraint. The planning reserve
requirement controls how much larger the installed capacity must be than the peak power gen-
eration on any time step over the time horizon in the optimization. It can be written as
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bcµ! is the filter for each transmission node, and Rg

µ is the planning reserve margin. Equation
(18) states that the installed capacity of natural gas within each transmission node must be
greater the the generation by natural gas at each time step in that same transmission node. The
planning reserve requirement constraint is run in every transmission node on every time step.
We could rewrite Eq. (18) such that it states
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which would reduce the number of constraints dramatically. However, Eq. (19) is nonlinear
and requires a much more computationally intensive algorithm to solve. Therefore, we adopt
Eq. (18) as the constraint within the present optimization. For both the global and US study the
planning reserve margin is set at 15%.

The existing (2012) nuclear and hydroelectric plants are assumed to continue to run through
the course of the optimization period. To get an estimate of the power output of those plants
we collected data and estimated a monthly value for both nuclear and hydroelectric generation.
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Nuclear and hydroelectric dispatch constraints 

We outlined the process in section 3.2. To allow the optimization the benefit of ramping of
nuclear and hydroelectric by a small amount two constraints were devised. They allow the
actual generation from nuclear and hydroelectric to vary about the monthly figures generated
by section 3.2, denoted by Nµ⌧ and Hµ⌧ respectively. The two constraints (known as the nuclear
and hydroelectric dispatch constraints) appear as
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�
bcµ! · Nµ⌧

�


X

µ

bcµ! ·Nµ⌧  Bn+
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
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bcµ! ·Hµ⌧  Bh+
! ·

X

µ

�
bcµ! · Hµ⌧

�
, 8 !. (21)

Here Nµ⌧ and Hµ⌧ represent the variables for the nuclear and hydroelectric generation created
by the optimization. The term bcµ! filters the generations to the appropriate transmission nodes.
The amount by which the nuclear power output can vary from the value set in section 3.2 is
bounded by Bn�

! and Bn+
! , while the amount the hydroelectric power output can vary is set by

Bh�
! and Bh+

! . The global study does not include existing nuclear or hydroelectric power plants,
thus Eqs (20) and (21) are not used in those optimizations. For the US study it is assumed that
the generation values set in section 3.2 are the upper bounds for the generation used by the
optimization (Bn+

! = Bh+
! = 100%). The lower bound for the nuclear power output is fixed

at 97.5% (Bn�
! = 97.5%) and the hydroelectric power output is set at 95% (Bh�

! = 95%). An
assumption was made to allow hydroelectric more freedom to dispatch than the nuclear because
they more readily dispatch in current electric power systems.

It is clear that there cannot be an infinite number of generators at a specific location, how-
ever, an optimization routine needs to have a value supplied for it to be able to enforce a con-
straint of that nature. For wind and solar plants, we discussed the process for evaluating the
area available for development by the optimization. We state that the values calculated from
section 2 on land use and siting constraints provide an upper bound to the deployment of wind
and solar, which we denote Bv+

� . We can then constrain the installed capacity of wind and solar
(V�) by

Bv�
�  V�  Bv+

� , 8 �,. (22)

The lower bound (Bv�
� ) is zero for the global study because we assume no knowledge of the

existing generators. For the US study, we assume that the existing (2012) wind and solar PV
plants remain functional through the optimization period and set the lower bounds for those
optimizations. We call Eq. (22) the wind and solar siting constraint.

It is also true for conventional generators that there is limits on siting. For the global study
we had no siting constraints for natural gas due to the authors not having sufficient data to
adequately describe it. For the US study, we found the location of all existing natural gas and
coal fired power plants and only allowed development of natural gas at those specific sites. We
further assumed that no more than 10 GW (Bg

µ) could be developed at a single site. We write
the natural gas siting constraint as

0  Gµ  Bg
µ, 8 µ. (23)
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assumption was made to allow hydroelectric more freedom to dispatch than the nuclear because
they more readily dispatch in current electric power systems.

It is clear that there cannot be an infinite number of generators at a specific location, how-
ever, an optimization routine needs to have a value supplied for it to be able to enforce a con-
straint of that nature. For wind and solar plants, we discussed the process for evaluating the
area available for development by the optimization. We state that the values calculated from
section 2 on land use and siting constraints provide an upper bound to the deployment of wind
and solar, which we denote Bv+

� . We can then constrain the installed capacity of wind and solar
(V�) by

Bv�
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� , 8 �,. (22)

The lower bound (Bv�
� ) is zero for the global study because we assume no knowledge of the

existing generators. For the US study, we assume that the existing (2012) wind and solar PV
plants remain functional through the optimization period and set the lower bounds for those
optimizations. We call Eq. (22) the wind and solar siting constraint.

It is also true for conventional generators that there is limits on siting. For the global study
we had no siting constraints for natural gas due to the authors not having sufficient data to
adequately describe it. For the US study, we found the location of all existing natural gas and
coal fired power plants and only allowed development of natural gas at those specific sites. We
further assumed that no more than 10 GW (Bg

µ) could be developed at a single site. We write
the natural gas siting constraint as
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Wind and solar siting constraint 

We outlined the process in section 3.2. To allow the optimization the benefit of ramping of
nuclear and hydroelectric by a small amount two constraints were devised. They allow the
actual generation from nuclear and hydroelectric to vary about the monthly figures generated
by section 3.2, denoted by Nµ⌧ and Hµ⌧ respectively. The two constraints (known as the nuclear
and hydroelectric dispatch constraints) appear as
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Here Nµ⌧ and Hµ⌧ represent the variables for the nuclear and hydroelectric generation created
by the optimization. The term bcµ! filters the generations to the appropriate transmission nodes.
The amount by which the nuclear power output can vary from the value set in section 3.2 is
bounded by Bn�

! and Bn+
! , while the amount the hydroelectric power output can vary is set by

Bh�
! and Bh+

! . The global study does not include existing nuclear or hydroelectric power plants,
thus Eqs (20) and (21) are not used in those optimizations. For the US study it is assumed that
the generation values set in section 3.2 are the upper bounds for the generation used by the
optimization (Bn+

! = Bh+
! = 100%). The lower bound for the nuclear power output is fixed

at 97.5% (Bn�
! = 97.5%) and the hydroelectric power output is set at 95% (Bh�

! = 95%). An
assumption was made to allow hydroelectric more freedom to dispatch than the nuclear because
they more readily dispatch in current electric power systems.

It is clear that there cannot be an infinite number of generators at a specific location, how-
ever, an optimization routine needs to have a value supplied for it to be able to enforce a con-
straint of that nature. For wind and solar plants, we discussed the process for evaluating the
area available for development by the optimization. We state that the values calculated from
section 2 on land use and siting constraints provide an upper bound to the deployment of wind
and solar, which we denote Bv+

� . We can then constrain the installed capacity of wind and solar
(V�) by

Bv�
�  V�  Bv+

� , 8 �,. (22)

The lower bound (Bv�
� ) is zero for the global study because we assume no knowledge of the

existing generators. For the US study, we assume that the existing (2012) wind and solar PV
plants remain functional through the optimization period and set the lower bounds for those
optimizations. We call Eq. (22) the wind and solar siting constraint.

It is also true for conventional generators that there is limits on siting. For the global study
we had no siting constraints for natural gas due to the authors not having sufficient data to
adequately describe it. For the US study, we found the location of all existing natural gas and
coal fired power plants and only allowed development of natural gas at those specific sites. We
further assumed that no more than 10 GW (Bg

µ) could be developed at a single site. We write
the natural gas siting constraint as

0  Gµ  Bg
µ, 8 µ. (23)
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•  Optimization has O(106) equations, O(107) variables and O(108-9) non zeroes 

•  Solves in O(106) iterations or O(105) seconds. 

•  We solve on two platforms: 
1.  Large RAM desktop (75 GB, 1 processor) 
2.  Dedicated Server with 1 TB of RAM and 32 processors 

✔  256 node transmission network with a nested algorithm for true optimality 
✔  Expansion of current technologies to locations proposed 
✔  Switching generators and heat rates when use permits it 
✔  Concentrating Solar Power output and storage within optimization 
✔  Multi-year investment and dispatch 
✔  HRRR dataset for simpler power modeling for higher resolution optimization 
✔  AC modeling of transmission within node structure 
✔  Much more accurate solar irradiance modeling 
✔  Including forecast error statistics as an input / stochastic optimization 



 
Step 1.  We collected an extraordinarily detailed and accurate weather 
data set. 
 
Step 2. We collected electric load data concurrent in time with the 
weather data.  
 
Step 3.  We developed a power system simulator that used all power 
sources and associated infrastructure ( transmission and storage). 
 
Step 4.  The weather and economic simulator was used to study 
the technical, economic and geographic characteristics of a 
national system.  
 

US Study:  National Energy System Designer 
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    Study : Effect of HVDC Transmission 
 
•  Scaling:  Size of energy market area 

varied. 
 
•  Demand projected to 2030. 

•  LLH = Low cost wind, solar, High-cost gas 
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Global carbon-free generation increases with geographic domain. 

Area of: 
•  US 48 
•  China 
•  EU 
•  Australia 

Area of: 
•  US State 
•  China Province 
•  Germany 

Global Study - 2030 
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Conclusions 

•  Since weather is variable over large geographic 
scales, wind and solar generation and use must also 
encompass large geographic areas to be reliable 
and cost effective. 

 
•  An HVDC transmission grid would enable a large 

domain, such as the US 48 states. 

•  The US Study, using optimistic projections of wind 
and solar costs, could reduce CO2 emissions by 
82% with somewhat lower electric costs. 

•  The Global Study, using mid-range cost projections, 
shows that wind and solar energy will not play a 
significant role in reducing CO2 emissions without 
transmission enabled large domains. 44	
  



Questions . . . . 
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